R APPROVED FOR
R PUBLIC DISTRIBUTION

T ik GO

MASSACHUSETTS INTITUTE OF TECHNOLOGY D T E C VLS| PUBLICATIONS

oL

DA

FLECTE '
VLSI Memo No. 89-571 JAN 17 1520 5_
October 1989 A

%

(o))

- DY

F2 Ll L]
Irredundant Sequential Machines Via Optimal Logic Synthesis

™~

F

N Srinivas Devadas, Hi-Keung Tony Ma, A. Richard Newton, and Alberto Sangiovanni-

< Vincentelli

O

< Abstract

1

\

It is well known that optimal logic synthesis can ensure fully testable combinational logic
designs. In this paper we show that optimal sequential logic synthesis can produce

‘ irredundant, fully testable finite state machines. Test generation algorithms can be used to
remove all the redundancies in sequential machines resulting in a fully testable design.
However, this method may require exorbitant amounts of CPU time. The optimal
synthesis procedure presented in this paper represents a more efficient approach to achieve
100% tcstability.,

Synthesizing a sequential circuit from a State Transition Graph description involves the
steps of state minimization, state assignment and logic optimization. Previous approaches

to producing fully and easily testable sequential circuits have involved the use of extra logic
and constraints on statc assignment and logic optimization. In this paper we show that

100% testability can be ensured without the addition of extra logic and without constraints on

the state assignment and logic optimization. Unlike previous synthesis approaches to
ensuring fully testable machines, there is no area/performance penalty associated with this
approach. This technique can be used in conjunction with previous approaches to ensure
that the synthesized machine is easily testable. (N b DF

Given s State Transition Graph specification, a logic-level automaton that is fully testable
for all single stuck-at faults in the combinational logic without access to the memory elements
is synthesized. This procedure represents an alternative to a Scan Design methodology
without the usual area and performance penalty associated with the latter method.

® 90 01 16 147

/ Microsystems Massachusetts Cambridge Room 39-321
Technology institute Massachusetts T

elophone
Laboratories of Technology 02139 ° (617) 2563-0292

[4

Licces:on Fo_r \
NTIS CRA&I o 4
DTIC TAB 0
Unanney ~.d Q
Justificat., .
BY —_—
Distribution
Avatisbiiity é—odes i
— DO I e
. w Asail 5i:d)or
- \ Dist ! o hecial
k:ﬂﬁv ‘
N A-1
X -]

Acknowledgements

This research was supported in part by the Semiconductor Research Corporation, the
Defense Advanced Research Projects Agency under contract N00O0i14-87-K-0825, and a
grant from AT & T Bell Laboratories.

Author Information

Devadas: Department of Electrical Engineering and Computer Science, Room 36-848,
MIT, Cambridge, MA 02139. (617) 253-0454.

Ma, Ncwton, and Sangiovanni-Vincentelli: Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA 94720.

Copyright© 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form “private
communication.” For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Technology Laboratories,
Room 39-321, MIT, Cambridge, MA 02139; (617) 253-0292.

Irredundant Sequential Machines Via Optimal Logic Syvnthesis

Srinivas Devadas® Hi-Keung Tony Ma.
A. Richard Newton and Alberto Sangiovanui- Viucentells

Department of Electrical Engineering and Computer Scieuces
University of California. Berkeley

Abstract

It is well known that optimal logic syuthesis can ensure fully
testable combinational logic designs. In this paper, we show that
optimal sequential logic synthesis can produce irredundant, fully
testable finite state machines. Test generation algorithms can be
used to remove all the redundaucies in sequential machines result-
ing in a fully testable design. However. this method may require
exorbitaut amounts of CPU time. The optiwal synthesis proce-
dure presented iu this paper represents a more efficient approach
to achieve 1007 testability.

Syvuthesizing a sequential circuit from a State Transition Graph
description involves the steps of state wiuiwization. state assigu-
ment and jogic optimization. Previous approaches to producing
fully and easily testable sequential circuits have involved the use
of extra logic and coustraints on state assipument and logic op-
timization. In this paper. we show that 100% testalulity can be
ensured without the addition of ertra logic and without constraints
ou the state assignment and logic optimization. Unlike previous
svithesis approaches to ensuring fully testable machines. there is
no area/performance penalty associated with this approach. This
teclinigue can be used in conjunction with previous approaches
to eusure that the svathesized wmachine is easily testable.

Given a Srate Trausition Graph specification. a logic-level au-
towmaton that is fullv testable for all single stuck-at faults in the
combinational logic without access to the memory elements is syu-
thesized. This procedure represents an alternative to a Scan De-
sigu wethodology without the usual area and perforsance penalty
associated with the latter method.

1 Introduction

Test generation for sequential circuits has long been recoguized as
a difficult task [5]. A popular approach to solviug this problem is
to make all the memory elements controllable and observable. i.e.
Complete Scan Design (9] [1]. Scan Design approaches transform
the sequential testing problei iuto one of combinational test gen-
eration which is cousiderably less difficult. Thev also remove all
sequential redundancies in a circuit. siuce direct access is provided
to the wmemory elements. However, there are situations where the
cost in terms of area and performance of Complete Scan Design
is not affordable. Also. the testing time associated with Scan De-
sigu is higher than that of a mon-scau design. because values have
to be sequentislly scanued into and out of the memory elements
one clock cvcle at a time.

It is well known that optimal logic syuthesis can ensure fully
testable combinational logic desigus. Iu this paper, we show that

*Depariment of Electrical Engineering and Computer Science. Mas
sachusetts Institute of Technology. Cambridge

optimal sequential logic synthesis can produce fullv testable non-
scau finite state machines. Test generation algorithws can be used
to remove all the redundancies in sequential maclines resulting in
fully testable designs. However. in geueral. this method requires
exorbitant awounts of CPU time. The optiwmal synthesis proce.
dure presented iu this paper represents a more efficient approach
to achieve 100%. testability.

Syuthesiziug a sequential circuit from a State Transition Graph
description iuvolves the steps of state minimization. state assigu-
weut and logic optimization. Previous approaches (e.g. [S]} to
producing fully and easily testable sequential circuits have en-
tailed the use of extra logic and coustraiuts ou state assiguwent
and logic optimization. In this paper. we show that 1007 testabil.
ity can be ensured unthout the addition of eztra logic and unthout
constraints on the state assigument and logic optimization. This
technique cau be used in conjunction with previous approaches
to ensure that the svuthesized machine is easily testable.

The finite automatou is represented by a State Tramsition
Graph. truth table or by an intercounection of gates and flip-
flops. The syuthesized /re-synthesized logic-level implementation
is gnaranteed to be fully testable for all single stuck-at faults in the
cowbinvational logic without access to the memory elements. This
procedure represeuts an alternative to a Scau Design wethodol-
ogy without the usual area and performaunce penalty associated
with the latter method.

Basic definitions and terminologies used are given in Section
2. Various tvpes of redundaut faults in sequential circuits are de-
scribed iu Sectiou 3. In Section 4. we outline an optimal syuthesis
procedure of state winiwmization. state assignment aud logic op-
timization that produces a highly testable Moore or Mealy finite
state machine beginning from a State Trausition Grapl descrip-
tion. Any existing sequentiallv redundant faults in this machine
are implicitly removed using extended don’t care sets ju repeated
combinational logic minimization. These don’t care sets are de-
rived using techniques that check for state equivalence. We give
theorems which prove the correctuess of these procedures. In Sec-
tion 5. we discuss the effects of redundancy removal ou the state
encoding of the machine. Preliminary results. which indicate that
these procedures are viable for medinm-sized circuits. are given
in Section G.

2 Preliminaries

A variable it a symbol representing a single coordinate of the
Boolean space (e.g. a). A literal is & varisble or its negatiou (e.g.
a or ¥). A cube is a set C of literals such that € C implies
Y £ C (eg. {a.0.7} is a cube. aud {a.7} is not a cube). A cube
represents the conjunction of its literals. The trivial cubes. writ-
ten 0 aud 1. represeut the Booleau functions 0 aud 1 respectively.

An expression is a set f of cubes. For example, {{a}.{b.?}}
is an expression consisting of the two cubes {a} and {6,7}. An
expression represeuts the disjunction of its cubes.

A cube mayv also be written as a bit vector on a set of variables
with each bit position representing a distinct variable. The values
taken by each bit can be 1. 0 or 2 (dou’t care). signifving the true
form. negated form and nou-existeuce respectively of the variable
correspouding to that positiou. A minterin is a cube with only
0 and 1 entries.

- A finite state machine is represented by its State Transition
Graph (STG), G(V.E.W(E)) where 1 is the set of vertices cor-
responding to the set of states S. where ||S|| = N, is the car-
dinality of the set of states of the FSM. an edge joins ¢, to v,
if there is a primary input that causes the FSM to evolve from
state r; to state ¢,. and W(E} is a set of labels attached to each
edge. each label carrving the information of the value of the input
that caused that transition and the values of the primary outputs
corresponding to that trausition. In general, the W(E) labels are
Boolean expressious. The number of inputs and outputs are de-
noted N, and .\, respectively. The input combination and preseut
state correspoundiug to an edge or set of edges is (7, &), where i
and & are cubes. The faniu of a state. ¢ is a set of edges aud is
denoted fanin(g). The fanout of a state ¢ is denoted fanout(gq).
The output and the fanout state of an edge (7. ¢) € E are o{(. ¢))
and n({i. £)) € V" respectively.

Given \, inputs to a machine, 2% edges with minterw input
labels fan out from each state. A STG where the next state
and output labels for every possible transition from every state
are defined corresponds to a completely specified machine.
An incompletely specified machine is one where at least oue
trausition edge from some state is not specified.

A startiug or initial state is assumed to exist for a wachive. also
called the reset state. Given a logic-level finite state machine
with N latches. 2 possible states exist in the machine. A state
whicli can be reached from the reset state via some input vector
sequence is called a valid state in the STG. The input vector
sequence is called the justification sequence for that state. A
state for whick no justification sequence exists is called an invalid
state. Giveu a fault F. the State Trausition Graph of the macline
with the fault is denoted G¥. Two states iu a State Trausition
Graph G are equivalent if all possible input sequences when the
wmachine is initially in either of the two states produce the sawme
output respouse.

A State Trausition Graph G, is said to be isomorphic to an-
other State Trausition Graph G, if aud only if they are identical
except for a renaming of states.

The fault mode] assumed is single stuck-at. A finite state
wmachine is assumed to be implemented by combinational logic
and feedback registers. Tests are generated for stuck-at faults in
the combinational logic part.

A primitive gate in a network is prime if none of its inputs cau
be removed without causing the resulting circuit to be function-
ally differeat. A gate is irredundant if its removal causes the
resulting circuit to be fanctionally different. A gate-leve] circuit
is said to be prime if all the gates are prime aud irredundant
if all the gates ase irredundant. It can be shown that a gate-level
circuit is prime and irredundaat if and ouly if it is 100% testable
for all single stuck-st faults.

We differentiate between two kinds of redundancies in a se-
quential circuit. If the effect of the fault caunot be observed at
the primary outputs or the next state liues, beginning from any

state. with any input vector. the fault is deemed combination-
ally redundant. A sequentially redundant fault is a fault
that canunot be detected by any input sequence and is not cowbi-
nationally redundant.

To detect a fault in a sequential machine. the wachiue has to be
placed iu a state which can then excite aud propagate the effect
of the fault to the priwary outputs. The first step of reachiug the
state in questiou is called state justification. The secoud step
is called fault excitation-and-propagation.

Ax edge in a State Transition Graph of a wmachine is said to be
corrupted by a fault if either the fanout state or output label of
this edge is chauged because of the existeuce of the fault. A path
in 8 State Trausition Graph is said to be corrupted if at least oue
edge in the path Las beeu corrupted.

A multiple F-type fault for a live L. (which is the output of
a gate and not a primary output). in a cowbjnational network
corresponds to a multiple fault couditiou on the fanout branches
of line L. The wultiple fault depends ou the types of gates that
L feeds into. For exawple. if a line L; bas three fanout Lrauche<
a. b. c. that feed into AND. OR. AND gates respectively. thes,
the wultiple F-tvpe fault for L, is a stuck-at-1. b stuck-at-0 aud
¢ stuck-at-1. If the multiple F-tvpe fault for a line is redundant.
it means that the line (and all its fanout brauches) can be bodilv
removed.

3 Origin of Redundant Faults in Sequen-
tial Circuits

There are two classes of redundant faults in a sequential ciscur.
uawmely. combinationallv aud sequentialiv redundaut faultc. Coy:.
binationally redundaut faults {CRFs) are due to the presence of
lines/wires i the logic circuit that do not contribute to the
wmarv output or the next state functious. Replacement of the
lines by constants will not change the functionality of the cowb:
uatioual logic in the sequential circuit. CRFs canuot be detected
eveu if all the wewory elewents of the sequential circuit are made
scauuable. Sequentiallv redundaut faults (SRF<). on the otbe:
haud. are related to the tewmporal characteristics of the sequential
circuit. Althoupli SRFs alter the cowbinational logic functioy of
the circuit aud heuce the State Trausition Graph (STG) repre-
seuting the sequential circuit. thev caunot be detected without
waking some of the latches scannable.
We now provide a definition of seqnentially reduudant faulss.

1. An equivalent-SRY is a fault which causes ouly interchauge
aud/or creatiou of equivalent states in the STG of the finite
state machine.

2. Au invalid-SRF does not corrupt any fanout edge of a valid
state reachable from the reset state.

3. An isomorph-SRF trausforms the original machine isowmor-
phically. ie. the faulty wachive is equivalent to the good
wachine but with a different encoding. (There exists au iso-
wmorphiss between the origiual and the faulty machiue.)

We will use an example to illustrate the existence of sequentially
redundant faults.

The State Trausition Graph (STG) of » finite state machine is
shown in Figure 1. The machine has S states and the states
010 and 110 are equivalent. The logic implementation of the
combiuational part of the machine is shown ju Figure 2. The

N wi
s .T.
] > N2
1P L
i/
N3
G ED

i
Pt :

Figure 4: Faulty FSM with w2 s-a-1

Figure 5: Faulty FSM with an isomorph-SRF

fault wl stuck-at-0 (s-3-0) chauges the original STG to the one
shown in Figure 3. The corrupted edge is shown via a dotted line.
Since 010 and 110 are equivalent states in the original STG. the
fault wl 5-2-0 only canses au interchauge of two equivaleut states
of the machiuve and is therefore sequentially redundant. The fault
w2 s-a-1 chauges the wachine to the oue shown in Figure 4. The
fault creates au extra state 111. that was originally au invalid
state which is equivalent to the true state 110. Therefore the
fault 2 is also sequentially redundaut. The corrupted edge is
shown in dotted lines and the added edges shown in dashed lines.

If the detection of a fault in the cowbinational logic reqnires
the machine to be brought to an invalid state (e.g. 101). then
the fault is an invalid-SRF. An isomorph-SRF way chauge the
original machine to the one shown in Figure 5. Note that the
faulty machine represents an equivalent machine with a different
encoding. The eucodings for the states 000 and 001 in the original
wachine have been swapped. An isomorphisim exists hetween the
original and the faulty wachine.

Theorem 3.1 : A redundant fault in a finife state machme 1x
either a CRF or an equivalent-SRF or an mvalid-SRF o: au
1comorph-SRF.

Proof (by contradiction): Assume a fanlt. F.is a redundaunt fanlt
but not a CRF or equivalent-SKF or invalid-SRF or isomorpli-
SRF. Siuce F is not a CRF or au invalid-SRF. there wust be
au input sequence. heginning from the reset state. that will bring
the wachine to a state that can excite the fault and propagate
its effect at least to rome of the next state lines. Since F is
not au equivalent-SRF or au isomorph-SRF. the fault effect on
the next state lines will not cause au interchange or creation of
equivalent states or an isoworphic wmapping of states. This weans
the good state and the faulty state can be differentiated by a
propagation sequence. i.e. the fault effect is propagated to the
primary outputs, which means that the fault is testable. Q.E.D.

Theorew 3.1 guarautees that a fully testable finite state wa-
chine results if we ensure that none of these 4 kinds of redundan-
cies described above exist in the syuthesized miachine. Steps in
our synthesis procedure are desigued to achieve this goal.

4 Irredundant Fully Testable Sequential
Machines

A general model for a Mealy fnite state wachine is shown in
Figure G. It is realized by a combinational logic block. which im-
plements the output aud vext state logic fanctions. aud feedhack
registers. The Moore machine can be viewed as a special case of

PI +— PO

-

NSL + OL

Ps NS

FF

Figure 6: General Sequential Machine Model

a Mealy machine. where the outputs depend only on the present
state of the machine.

We first describe the optimal synthesis procedure in Section 4.1.
In Section 4.2. we prove that the resulting machine has no CRFs,
invalid-SRFs or isomorph-SRFs. Experimental results indicate
that the wachine has very few redundancies. In Section 4.3, we
present a modified svnthesis procedure using extended don’t care
sets in repeated combinational logic minimization which ensures
that equivalent-SRFs do not exist in the synthesized machine.
The svnthesized wachine is thus made fully testable. In Section
4.4. we briefly discuss how finite automata represented at the
truth table or at the logic-level can be made fullv testable.

4.1 The Synthesis Procedure

The procedure cousists of the steps of state winimization. state
assignment and combinatioual logic optimization. These steps are
described in the sequel.

1. State Minimization: Given au original State Transition
Graph specification GO we obtain a state minimum repre-
srentation. G, using algorithws similar to those proposed
in [14]. GM has N, valid states and satisfies the property
that no two states are equivalent. State minimization for
cowpletely specified State Trausiticu Graphs can be accow-
plished iu O(Nlog(N')) time where N is the umber of states
in the machine, but is NP-cowplete for incompletely specified
machines.

(3]

. State Assignment: We encode the states in GM pamely
Q. The number of encoding bits Ay can be arbitrarily large
(Np 2 loga(]IQll)). State assignmeni algorithms like those
in (13] and [7] can be used. which find » state assignment
that heuristically minimizes the area of the combinational
network after optimization. However, the state assigument
algorithiz may have to esplore a certain number of possible
state aarignments in order to ensure a locally optimal solution
({see Definition 4.2).

3. Combinational Logic Optimisation: Given the encoded
machine, which is now a combinational logic specification, we
synthesize 3 prime and irredundant combinational logic net-
work which implements both the next state logic and output
logic fanctions. The trausitions from the unused state codes,

are used as don’t cares during the miniwization. The —uw-
ber of inputs to the network will be N, + N}, aud the nuwber
of outputs will be N, + Ay. Prime aud irredundaut two-Jevel
networks can be produced using two-level logic minimizers
like ESPRESSO (3]. Prime and irredundant multi-level uet.
works cau be syuthesized using techaiques like those in [2).
The multi-level network has to be irredundant for a certaiu
class of wmultiple stuck-at faults as well (see Lemna 4.2).

We will have N} latches in the synthesized sequential machine
(denoted S M) and 2™ valid and iuvalid states in the completely
specified State Transition Graph (denoted G).

4.2 Correctness of Procedure

We can prove that the sequential machine synthesized by the pro-
cedure of the previous section is irredundaat for all CRFs. invalid-
SRFs and isomorph-SRFs.

The following theorem follows from the definition of state min-
imality. It is given in {11).

Theorem 4.1 : Given a state minimized (reduced) machine M
with N, states. no machine unth fewer states can realize the same
terminal beharor. Also. any mackine with the same number of
states that realizes the same behamor has fo be Al or steomorphic
to M.

We now show that stuck-at faults canuot produce a faulty State
Transition Graph that is isomorphic to the true State Transition
Graph if the combinational logic iwplementing the next state and
output logic functious is two-level. prime and irredundant. Il
morphic faulty and true State Trausition Graphs imply that the
fault Las no other effect than interchanging the codes of the statee
of the machine.

Tle proof of this lemuna can be found in Appendix A.

Lemma 4.1 : Stuck-at faults on the prisnary input (PI). primary
output (PO). present state (PS) and nezt state (NS) lines cannot
produce a faulty State Tvansition Graph GF that is isomorphuc te
G.

Definition 4.1 : A multi-level network iz inversion-parity in-
variant if for any fault in the network. other than on the primary
snput lines. the parity of inversions te the same (either odid or
even) for all paths to the primary outputs.

Note that any two-level network is inversiou-parity iuvariant.
Also, petworks that are synthesized by algebraic factorization
from two-level networks are also iuversiou-parity invariant.

Theorem 4.2 : If the two-level combinational circuit implement-
tng the next state and output logic futictions is prime and irredun.-
dant, then any foult F in the circuit cannot produce a GF that is
isomorphic o G. Aleo. if a prime and irredundant snulti-level cir-
cwit s synthesized such that it is inwersion-parity innariant. then
eny fault F in the circuit cannot produce a GF that is isomnorphic
tG.

Proof: By Lemma 4.1, we need ot consider faults on the PI
and PS lines. In & two-level network. faults on the intermediate
lines and outputs. have the property that thev either produce
a D or a D at the cutputs of the network. uniformly for all test
vectors that detect the fault. Isomorphisw implies an interchauge

of codes of multiple states. Without loss of generality. assuine a
two-way swap. between the codes of ¢;. ¢; € G to produce GF
isowmorphic to G. An edge ¢; exists frowm sowe state s; that goes
to ¢; in GF instead of ¢, in G. Similarly. an edge ¢; from some
state ;. that goes to ¢ in GF instead of ¢2 in G exists. In the
combinational sense. if ¢, produces a D at some uext state line
where ¢; and ¢, differ. ¢; has to produce a D at that live. This
is not possible in a two-leve] network for faults on intermediate
lines and/or outputs. Therefore, isomorplisw cannot occur.

The sawe argument holds for a iuversion-parity invariant. prime
apd irredundant. multi-level network. Q.E.D.

In a general multi-level nerwork. however. the faults in the in-
termediate lines mayv produce both a D as well as a D at anyv
particular output. due 1o recouvergent fanout paths with differ-
iug uumbers of inversions. The arguments of Theorem 4.2 do not
hold. when Boolean operations are used in multi-level combina.
tional logic svathesis.

The proof of the following lemma cau Le foand in Appendix
B. A multi-level network can be m. ‘e prime and irredundant for
wultiple stuck-at faults via the procedure of {2}.

Lemma 4.2 : If a prime and irredundant multi-level network
C. with m outputs and asserting all 2™ output combinations. is
trredundant for multiple F-type faults for each line in the network
that is the output of a gate and not a primary output. then for
any single stuck-at fault. F. tn C. there will exist an input vector
pair (1. i) such that iy is a test vector for the fault and i; is
not. and iy produces the same output in CF as i doesin C.

Using Lemma 4.2. we cau prove the following theorem. that
restricts the occwrrence of isomorphisii in sequential machines.
implewented by prime and irredundant multi-level networks that
are also irredundant for multiple F-tvpe faults in the network. Q
denotes the set of states iu GV.

Theorem 4.3 : If a set of states Q; € Q is such that each state
in Q; has the property that its fanout edges assert distinct outputs
from all other states in Q or has fanout nert states in Q - Q.
which are distinct from the fanout states of all other states in
Q. or possesses distinct combinations of outputs and fanout nert
states. then a fanlt cannot produce an isomorphic machine cauring
only interchange of states within Q.

Proof: We will first prove the case of ||Q]| = 2 aud where fauout
edges frowm state s, assert a set of distiuct outputs Oy and fanout
edges frow the second state s, assert a set of distinct outputs
0;. Assunie there exists a fault F that produces au isomorphism
between these states. In the isomorph GF. fanout edges from s,
(%2) will assert O, (O;). However. by Lemma 4.2. an uncorrupted
edge assertiug sowe o € O, or o € O, bLas to exist iu GF. This
edge can ouly come from &) or 3. respectively. This means that
in the faulty machine. either #; or &7 asserts outputs from both 0,
and O,. implving that GF is not isomorphic to G. The argurnent
is easily geueralized to ||Q]| > 2.

A similar argament can be made for states #;, a3 with distinct
next state fanouts or distinct combinations of outputs and next
state fanouts. Q.E.D.

Thus. » seyuential mackhine with a GM where all states possess
distinct combinations of outputs and fanout states caunot have
faults that canse isomorplism, whether the combinational logic
is implemented in two-level or general multi-level form.

Definition 4.2 . A state assigmment of GV 1e deemed to be lo-
cally optimal unth respect to a subset of states Q; € GM . of
interchanging the codes of ¢ € Q; does not produce. after opti-
mization. a logic impleviientation that 1 ezactly the same as the
previous one. ercept with one less literal.

The state assignent is locally rather than globally optiwal in
the sense that interchaungiug the code of ¢ € Q; with ¢, ¢ Q,
could produce a better logic iwplementation. lu a multi-leve]
jmplemwentation. if there exist states in GM that do not satisfv
the coudition of Theorem 4.3. theu in order to eusure that a
redundant fault does not cause isomorphisw. the state assigniuent
of GM Las to be Incally optimal. with respect to interchanging the
codes of these states. For a two-level implewentatiou. any state
assignwent is locally optiwal. with respect to all states in G/.

Theorem 4.4 : If GM contains 2™ valid states where N, is the
nunber of latches in SM, SM s fully testable. if the prime and
rredundant combinational network = smplemented in two-level
form. or if a locally optimal state axsignment has been found. as
per Definition {.2. across gl atates that do not satisfy the coud:-
tion of Theorem 4.3.

Proof: No fault iu the macline can result in aun increase in the
vuwber of states. siuce the true machine has the maxiwuw possi-
ble nuniber of states. nawely 2 t. Since G is reduced. we know
that no machine with fewer than 2* states can realze the be-
havior of GM. All faults are combinationally irredundant. since
the combinational logic is prime aud inmedundant. For a com'y
pationally niredundaut fault F to be sequentiallv redundant, ti¢
faultv machine GF has to be isoworphic to the true mache G.
By Theorem 4.2 this is uot possible in a two-level iwplenenta
tion. In a muli;-level implemeutation. if GF is isomorplic to G.
the sets of states satisfving the coudition of Theorem 4.3 caunor
be involved iu the tsaworplism. If isomorphicm occuss duae so F
it has to iuvolve a set of states. Q;. not satisfving the condition
of Theorem 4.3. Tle isoworphisiu produces a G/ equivalent 10
G. with a better implementation (after optimization) thau thar
of G (with at least one less line). However. this coutradicts the
fact that the initial state assiguwent for GM tLat produced G is
locally optinal under the exchauge(s) of the codes of states in Q.
Therefore. S¥ is fully testable. Q.E.D.

The above theorew is quite a strong result. Given a State Tran-
sition Graph G, if extra states can be added to GV such that
the resulting graph GM' is reduced aud bLas 2" states. theu the
synthesized machine S*' is guaranteed to be fully testable. pro-
vided the state assiguwment is locallv optimal. Of course. addiug
the extra states aud edges to GM coustitutes an area overhead. If
GM has less thau 2 states. the unused state codes can be used
as don’t care states to minimize the combinational specification.

The proof of this lenuna cau be fouud in Appeundix C.

Lemma 4.3 : An ivalid etate in the State Transition Graph ix
never required to detect a foult in SV,

We now use the preceding resnlts to prove the partial irredun-
dancy theorem for machines whone GM has X, < 2 gtates.

Theorem 4.5 : The sequential machine S» produced by the ay.-
thesiz procedure may contain only equinalent-SRFx.

Proof: By Lemma 4.3, no invalid-SRFs can exist. By Theorem
4.2, if SM is implemented as a two-level network. no isoworph-
SRFs can exist. If SM is implewented as a multi-level network,
then a locally optimal state assigunment as per Definition 4.2,
across all states that do not satisfv the condition of Theorem
4.3. is found. This guarantees that no isomorph-SRFs will exict.
S does not routain any CRFs. Therefore. by Theorem 3.1, only
equivalent-SRFs can exist. Q.E.D.

4.3 Eliminating Redundancies Via Extended Don’t
Care Sets

In this section. we show Lhow the testabilitv of the synthesized ma-
chine SV can be increased by removing possible equivalent-SRFs
through succeeding logic minimization steps, without ezplicitly
identifying these redundancies. Redundaucies are identified and
removed smplicitly via the use of eztended don't care sets.

A mmple equivalent-SRF was illustrated in Figure 4 (Section 3).
We have a situation where an invalid state g has identical fanout
aud leuce is equivalent to some valid state v;. Au edge from v,
to 1y is corrupted to go to ¢. F ouly corrupts one edge in the
State Trausition Graplh and propagates ouly oue time-frame. In
the general case. a equivalent-SRF can propagate multiple tie-
frames. when the invalid state ¢ is equivalent to the true valid
gtate ry. but does not have ideutical fanout.

These redundancies are likely to occur. especiallv if a large
number of unused state codes exist. These redundauncies occur
because current state assignment algorithins do not use the free-
dom: of state splitting (Section 3). <0 as to obtain an optimal so-
Jution. It is verv difficult to extend state assipument algorithins
in this direction and heuce we ensure irredundancy by specify-
ing an extended don’t care set in a repeated logic minimization
procedure.

1. State assignment aud logic optiwization are performed as
before. with logic optimizatiou using the invalid states as
don’t cares.

2. Given the prime aud irredundaut logic network. the State
Transition Graph. G. corresponding to the network is ex-
tracted. All invalid states /v € G that are equivalent to valid
states v € G are found. It should Le noted that G is a cowm-
pletely specified combinational logic function. corresponding
to an eucoded State Trausition Grapl.

3. Given a valid state r;. valid states r;. v3... v; that are equiv-
alent to r; and invalid states i»; ir,. .. ity that are equiva-
leut to ry. then the fanin of vy is re-specified as n(fanin(v))
= DC(vy. va... vy, fry. frg. .. ivy). DC() implies that any
{but at least one) of the euclosed state eutries can be used.
Iu practice. if) and some or all of the ivg, 1 < k < K can
be werged into a single cube, ¢. then every occurrence of v
in the next state field of G is replaced by c. ! G with this
extended dou't care set is made prime and irredundant via
logic minimization to produce G'. This may make a previ-
ously invalid state valid.

4. G’ may have some invalid states. which could be different
from the invalid states in G. These invalid state codes are
'} the coder cannot be merged into » single cube, we have & Boolean

relation {4] corresponding 10 the permimible next states of the edge and the
combinationsl logic has 1o be optimized with respect to this Boolean relation.

used as dou’t cares and G’ is wade priwe and irredundant
under this uew dou't care set to produce G”.

5. HG' = G”, exit. Else G — G". go to Step 2.

Iu the first iteration. there will not be valid states 1. .. ry that
are equivalent to any v;. since we begin with a rednced wachine
However. after Step 3 ahove. sowe inuvalid states that are eguiva-
leut to v; mav becouie valid.

Theorem 4.8 : The procedure above converges. and the resulting
machine after convergence will not have any sinple eguivalent-
SRFs, invalid-SRF= or iromorph-SRFs.

Proof: The procedure converges when succeeding logic winimiza-
tions have produced the sawme result. Each Jogic minimizatiou
starts with the result of the previous logic winimization. Ad-
ditional don’t cares are provided. We are guaranteed that the
overall cost fanction (e.g. the nuwmber of Lines in the network) Lac<
a finite decrease if the logic function is altered. Siuce the cost
function is bounded from below. the sequence of logic minimiza-
tions must eventuallv couverge. and ou the last call. returny an
unchanged network. 5. No isomorph-SRFs will exist iu the priue
and irredundant network 3 by Theorem 4.2 aud Theorew 4.3,
Siuce the invalid states have heeu used as don’t cares to produre
n and the uetwork is unchanged since theu (eveu thouph add;
tional winimizatious wmay have beeu performed). no iuvalid-SRF«
can exist.

Finallv. using the don’t care sets corresponding to the equisa
lent states, ensures that for each fault F there will exact at jo,r
one corrupted edge that goes to a state. gF . that is nof equivalent
to the true next state. ¢. in the true machine G. regardiess of
whether the ¢F is juvalid or valid. # is unchauged since the u<e of
the invalid states as dou’t cares. so an edge fanuing out of a valid
state lias to exist with this property. ¢ € GF Las 10 hecowr
equivalent to ¢ € G for £ to be redundant. but that would wmean
that F is not a simple equivalent-SRF. Therefore. F is testahle
or not a simple equivalent-SRF. Q.E.D.

More complicated equivalent-SRFs way exist. though expeii.
wental evidence indicates that this is extremelyv rare. In fact. we
have ver to encounter a sngle case of au eyuivalent-SRF that i<
uot of the form of the SRF of Figure 4. These redundaucies co;-
respoud to the case. where ¢ € G is not equivalent to ¢ € G
but ¢F € GF becowes equivalent to ¢ € G. making F redundant.
A larger set of don’t cares can eusure that these equivalent-SRFs
do not occur in the mackhiue. The svuthesis procedure described
above is unchanged except for introducing an additional dou't
care set iu Step 8 where G’ is produced. as described below.

Step 3b: Given a state ¢; that is not equivalent to a valid state
¢1. the set of input combinations in(¢;. ¢;) are found which make
this pair not equivalent. If g; were equivalent to ¢y theu i, = 0.
The dou’t care specification is n(fanin(q,}) = DC(gy. ¢;). with
a constraint on a subset of fanout edges of ¢, if ¢, is picked rather
than ¢;. The constraint for a single cycle propagation is that

Oline(g1: ¢2). §2) = Oine(gr. @) 1) A Blinelqs. @) @2) = nlinelgr. @) 1)

This set of dou’t cares and associated constraints are found
for the different state pairs that are not equivalent. Optimal nee
of these don't cares and associated coustraints. generalized to
multiple-cvcle propagation. eusures full testability.

Theorem 4.7 : Using the additional don't care zet in the syn-
thesis procedure will result in a fully testable machine.

Proof: By Theorem 4.6. no simple equivalent-SRFs, invalid-SRFs
or isomorph-SRFs will exist in the machine. Using the additional
don't cares will ensure that there will always be an edge from a
valid state that is corrupted to ¢© iustead of ¢ such that ¢f ¢
G #g€Gand ¢F € GF # ¢ € G. Therefore. GF aud G cau
be differentiated by distinguishiug ¢F aud ¢ and F is testable.
Q.E.D.

The euhanced procedure will remove all equivalent-SRFs in the
machine which has been synthesized as described in the previous
section. In practice. only the simnple don't cares of Step 3 suffice
to ensure full testability. allowing a locally optimal solution with
uo redundancies to be reached: the more complicated don't cares
of Step $b are not required. That is fortunate, since current logic
optiwmization prograws are quite restricted in the specification and
optimal usage of don’t cares.

The procedure is quite CPU-intensive since repeated combina-
tional logic minimizations have to be performed. Experimental
results (Section 6) indicate that the machine prior to using the
extended don't care sets is highlv testable. and in some cases,
fullv testable. Rewoving the few redundaucies can be a3-rom-
plished using reasonable amounts of CPU time. The fact that
a network has to repeatedly be made prime and irredundaant in
order to ensure full testability for a sequential circuit. indicates
that svuthesizing irredundant sequential circuits is more difficult
than syuthesizing irredundaut combinational circuits.

4.4 Synthesis from Logic-Level Descriptions

In this section. we describe how complete or partial re-syuthesis of
logic-leve] circuits cau he performed so as to eusure jirredundant
sequential machines. Given a combiuational specification of a
circuit in the forw of a truth table. i.e. a previouslv encoded finite
state wachine. the following steps are perforuwed in re-synthesis.
The combinational specification bhas N, + N} iuputs and N, + N,
outputs. where N}, is the nmmber of encodiug bits used (latches)
in the state assignient process.

1. The combinational specification is made disjoint in the
present state field (the last Ny inputs). A cube entry in the
field is identical to another cube entrv or does uot intersect
it. A two-level cover can be made disjoiut using the disjoint
SHARP operation in |3).

2. The specification is pow treated as a State Trausition Table.
with each distinct eutrv in the present state and next state
field representing a distinct state. If some states caunot be
reached from the reset state (invalid states), they are deleted
from the description. The State Table is now state mini-
mized. Sowe states (represented by cubes or minterms) may
be removed because of being equivalent to other states.

3. The encoded State Trausition Table represents a combina-
tioual logic specification that can be made prime and irre-
dundant. A fully testable machine can be synthesized via
the procedures of Section 4.2 and 4.3.

The re-synthesis procedure can be extended to begin from a
logic-level description. In this case. the State Trarsition Graph
of the machine is extracted using the efficient cube-enumeration
techniques presented in {G). Given this (encoded) State Transition
Graph. Steps 1.3 described above are carried out as before.

-1

5 Effect of Redundancy Removal via
Logic Minimization on State Encoding

H a combinationally redundant line is removed from a logic net-
work (i.e. replaced with a 0 or a 1). network functionality remains
unchanged. Similarly. when a sequeutially redundant but cowmbi-
nationally irredundant line is removed from a sequential machine.
the terminal behavior of the machine remains unchanged. How-
ever. the State Trausition Graph of the maclhiune. and the state
eucoding are affected by redundaucy removal via repeated logic
minimization. .
Two things may happen during redundancy removal:

1. A state may be added to the State Trausition Graph. which
is equivalent to some other valid state. An edge is redirected
from sowe valid state to this originally invalid state.

2. A valid state may be replaced by an originally invalid state.
In effect, the eucoding of a symbolic state is chaunged.

The occurrence of the first effect is due to the fact that state
assigument is perforned on a state minimized Grapl. It is well
kuown {10] that state splitting way be required for au optimal
state assigniuent. Unfortunately. the state assignment problew
is difficult enough. without adding the extra degree of freedom
of being able to split states. Tle faulty. but equivalent. State
Graph correspouds to a “hetter” state assigniuent with (at least)
one state split into two (or wore) components.

The occurrence of the second effect is due to a state assign-
ment that is not locally optimal for the reduced State Grapl. even
without tlie addition of extra states. As mentioned in Section 4.2.
when a wachine has a two-level cowbinational logic impleinenta-
tiou. any state assignent is locally optimal with respect to all
the used state codes. However. the state assignmeut mav be sul-
optimal wlen cousideriug the invalid or unused state codes. In
the wulti-level case too. a state assigument that is Jocally optimal
under the valid (used) state codes way be sub-optimal when cou-
sidering the invalid (unused) state codes. The replacement of a
state code by au unused state code results in a “better™ wachine.

State assigument technigques (e.g. {7] [13]) do not take state
splitting into account in their attempt to find locally or globallv
optimal solutions. In our experience. the occurrence of the first ef-
fect s much more frequent. If an optiwal state assignent can be
found exploiting the freedow of state splitting. then the resultiug
logic implementation will be fully testable. Repeated logic suin-
imization. as described in Section 4.3. has the effect of changing,
a sub-optiwmal state encoding to a locally optimal encoding that
correspouds to a fully testable wachine.

6 Results

In this section, we present sowe preliminary results obtained us-
ing the synthesis procedures described in Section 4. Inteusive
optimizatiou is necessary to obtaiu fully testable desigus. If this
optimization can be carried out. then the synthesized machine
will occupy miniwal area. There is no area/performance over-
head associated with this procedure. However, the CPU time
requirements have to be evaluated.

Redundancies can be explicitly removed via the use of test pat-
tern generation algorithms. to produce fully testable sequential
circuits. However. redundaut lines corresponding to redundant
stuck-at faults can ouly be removed (replaced with a 0 or a 1)

EX #inp | #out | #states | #edges
exl 2 2] 24
ex2 2 1 13 57
bbara 4 2 v 45
bbsse 7 T 13 55
sl 8 6 20 110
plauet I 19 48 118
dfile 2 1 24 96
sty T 9 10 30 165
kevb H 2 19 170
scf 27 54 128 168

Table 1: Statistics of Benchwark Examples

one at a time. Furthermore. removing a redundant line may in-
troduce new redundaucies and so all faults have to be checked for
redundaucy ou each removal. We compare these two techniques
to the svuthesis of irredundant sequential circuits.

\We chose some exawmples in the MCNC 1987 Logic Syuthe-
sis Workshop as test cases. whose statistics are given in Table
1. Beginuing from a State Transition Graph description. G. the
following steps were perforined in the syuthesis procedure.

1. State Minimization: The machines were state minimized.

2. State Assignment: Binary codes were assigned to the
states in G using the program KI5S {13]. The eucoding length
in sowe cases was greater thian the minimum required. The
codes were all minterms. and sowe winteruis were not used.
The combinational logic specification. a truth table, after en-
coding is denoted T.

3. Logic Optimization: T. with all the unused state codes
specified as don’t cares. was optimized using ESPRESSO.
aud algebraically factored to produce a multi-level logic uet-
work C. C was prime and irredundant.

Tests were generated for the resulting sequential machine Af
whose combinational logic is implemented by C. Test generation
was accowmplished using the program STALLION [12). The nuwm-
ber of encoding bits used in state assignment (#lat). the number
of gates in C (#gate) and the fault coverage obtained (fault cov.)
by STALLION are given iu Table 2. The CPU times for logic opti-
nization (l.o. time). test generation (TPG time) and the number
of test sequences (test seq.) generated are also given. All the un-
detected faults were checked for redundancy using algorithms in
STALLION. The number of redundant faunits (%red. fault) and
the CPU time expended during redundancy identification (rd.
time) and redundancy removal (r.r. time) are given in Table 2.
The CPU times for state assignipent and the initial state mini-
mization were negligible and are not given. In the tables, s stands
for CPU seconds on a VAX 11/8650 aud m for CPU minutes. For
all the cases, the machine produced is highly testable. The larger
examples. scf and planet which have significantly more outputs
than latches are fully testable.

The redundancy identification times in Table 2 represent the
CPU tiwmes required to explicitly identify redundant Lines in the
given circuit. Explicitly removing these redundancies in order to
obtaiu a fully testable circuits requires cousiderably more CPU
time as indicated in Table 2 (r.r. time). This method is only
feasible for swmall exawples.

EX #lat. | #gate | fault lo. | TPG | test | %red. ri. | .
cov. | tiwme | tiwme ! seq. | fault | tiwme | time
exl 3 23 197.92 0.5 2.0s 19 208¢ 11| 20«
ex2 5 35 | 98.15 22s | 41.8s] 22 1.85| G.l1s
bbara 3 56 | 100.0 1.2s | 104.8s | 42 00| 0.0s
bbsse 4 91 { 100.0 21s{ 32w | 46 00| 00s] 0.0«
51 5 105 | 99.79 5.5% 303s 4 0211 4.0¢] 303«
plauet 6 193 11000} 10.5s | 141.85| 80 001 00| 0.0¢
dfile 6 77 197.80 6.2s | 331.8s | G2 220 | 41.8< | > 1L
StVT 5 367 | 100.0 | 80.4s | 42.1m | 165 00] 00<) 0.0«
kevb 5 146 { 98.65{ 29.5s { 21.2wm | 101 1351 1.2m | > 1)
scf 8 402 | 100.0 | 121.4s | 82.2m | 136 00] vou<| vo-

Table 2: Synthesis Procedure Results

[EX se. | #logic | L. o. | fault | TPG
time | wini. | timge [cov. tile

exl 0.5¢ 1 0.5< | 100.0 2.1s
ex? 6.5 71224511000 40.Gs
sl 1.0s 11 6.1s | 100.0 | 298.2<
dfile | 10.2s 3] 2555|1000 747.7¢
kevl | 14.G< 2| 27.8< {1000 { 21.6m

Table 3: Results using Extended Don’t Care Sets in Svuthiedis

Tle nuwber of test sequences generated for each exawmple i«
comparable to the unmuber of siugle test vectors generated via a
Cowplete Scan Design approach. Howcver. eacl test seqnence
has multiple test vectors (between 1-10) that have to be apphed
to the PI lines. In the Scau Design case. eaclt test vector requires
wuftipie clock cvcles to he applied.

Tlhe examples of Table 2 with < 100% fault coverage were ve.
synthesized using the extended don’t care set as described iu Sec-
tion 4.3. The CPU tiwe to check for equivalence between invalid
aud valid states (s.e. time}. number of logic winimizations {#logic
mini.). CPU time spent in logic miniwization (l.o. time). the fi-
ual fault coverage {fault cov.) using STALLION aud the test
generation time (TPG tiwe) are indicated iu Table 3. The CPU
time required for the state equivalence checks and the extra logic
wminimizatiou steps are less thau seynential test geueration and
redundaucy removal times (Table 2). indicating that the optimal
svathesis procedure is wmore efficient than an explicit redundaney
identification method. Using the simple dou't cares (Step 3 in
Section 4.3) resulted in fully testable designs in all cases. We have
yet to find au exawple where this is not the case.

7 Conclusions

We bave described » svuthesis procedure that produces an opti-
mized, folly testable logic implementation of a sequential mackine
from a State Transition Graph description of the machine. Dur.
ing synthesis, possible redundancies ia the machine are implicitly
eliminated using state equivalence checking and combinstional
logic winimization. No direct access to the mewmory elements is
required.

Tlhe optimal synthesis procedure described involves the steps

of state minimization. state assignment and logic optimizatiou.
It is applicable to Moore or Mealy finite state machines. This
procedure has no associated area/performance overhead uulike
Scan Design metliodologies. It can be used in conjunction with
previous synthesis approaches to eusure easily testable sequen-
tial machines. In this case. test sequences which detect all siu-
gle stuck-at faults in the sequential machine can be obtained via
combinational test generation and depth-first search ou the State
Trausition Graph.

Ougoiug work includes the generalization of these methods to
arbitrary interconnections of finite state machines.

8 Acknowledgements

The interesting discussions with Kurt Keutzer and Robert Bray-
ton on sequential circuit optimization and testability are ac-
knowledged. This work was supported in part by the Semicon-
ductor Research Corporation. the Defeuse Advanced Research
Projects Agency under contract N00014-87-K-0825 and a graut
from AT&T Bell Laboratories.

APPENDIX

A Proof of Lemma 4.1

Proof: Cousider a primary input fault F. Without loss of
generality. assume that it is a stuck-at-1 fault on the 1st pri-
wary input line. Tbhe effect of this fault is to cause all input
vectors iy such that i [1] = 0 to becowe. in effect. f; where
i1l = 1 && 4] = @) 2 £ i £ N,. Since F is combiua-
tionally irredundaunt. there will exist an iuput vector pair (1;. 72)
where ih[1] = 0. i;{1] = 1 && 4[i] = i3[1]. 2 £ 1 £ N, such that
niiy. q)# n(iz. g) |l oliy. ¢) # o(i, g¢) for some ¢ (Else. 7y can
be replaced by /; U 73 in the combinational truth table). First.
consider the case where the fanout states are different for r; aud
i. Hin G.nliy. q) = ¢; and n{iz. ¢) = ¢3. then in GF we have
n{iy. ¢) = n(iz. ¢) = g3. For GF to be equivalent to G, we need
p€eEGF = yeGandge GF = ¢3 € G (since there is a cor-
rupted and uncorrupted edge frowm ¢ to ¢; in GF). This requires
¢3 € G = ¢; € G. which is a contradiction. The second case
where the primary outputs of /; and i, are different is simpler.
We have two edges from a state in G that assert different outputs
and go to the same next state. werging in GF. This means GF
caunot be isomorphic to G.

A primary output o exists in GM . if and ouly if there exists a
pair of edges ¢; and ¢; which assert both values of the output.
0/1. When the machiue makes the transition corresponding to
the edge which asserts the value of the output different from the
stuck value. the fault will be detected.

If all stuck-at faults on present state lines are combinationally
irredundant. for any present state line i, there are two states ¢
and g; whose codes differ in bit i alone. ¢; and ¢; merge in G¥
due to a fault on present state line i. Hence, ||GF|| < ||G|} and
isowmorphism cannot occur.

The argument for the next state line faults is similar to the
argument for the present state line fauits. Q.E.D.

B Proof of Lemma 4.2

Proof: Cousider 3 prime and irredundant multi-level circuit im-

plementing G. Tlhe circuit is levelized frow the primary outputs
to the primary inputs. Gates generatiug primary outputs are as-
signed level 0 aud a gate that drives gates with levels I;. Iy... I,
Las a level equal to AfIN(l,) + 1. The gates at level j are
g51- 9;2. -g;n;- The outputs of these gates coustitute a set of
N, variables IN'(j)(i). 1 £ 1 < N,. The combinatious of IV7(;)
that are caused by sowe primary input combination are denoted
IV(j)°4 and the cowbiuations that never appear are denoted
npe.

Without loss of generality. cousider the s-a-0 aud s-a-1 faults
ou JV(1)(1). Sowe ity € TV (1) har to detect the s-a-0 fault
aud sowe ity € JV(1)C4 has to detect the s-a-1 fault. Obvi-
ously. ity{1] = 1 and img{1) = 0. I for any ir, € NV(1)7
that detects the 6-a-0 fault. there is a ity € J1 (1) such that
ir3(1] = 0. se3fi] = iny[i]. 2 € i £ N,. theu we have a cowple-
mentary PI vector pair (7). i3) corresponding to (iry. fry) with
iy detecting the s-a-0 fault and producing a fanlty output equal
to the true output of i3 which does not detect the fault. Further-
more, (3. #;) will be a complementary P vector pair for the s-a- 1
fault.

We theu consider the case of iry3 € IV (1)PC for all i1 €
IV(1)T4 that detect the s-a-0 fault. By the argument above.
if for anyv iv; € NV(1)€4 that detects the s-a-1 fault. there is a
ivg € JV(1) such that ieg[1] = 0. iv i) = irpfi). 2< i < X,.
then (¢r;. iry) coustitutes a complementary pair for the s-a-1 fanlt
aud (1ry. 117) constitutes a complementary pair for the s-a-0 faulr.

The last case we need to consider is irg € JV(1)P7 for all
ir; € IV(1)74 that detect the 5-a-0 fault and iry € IV()P°
for all ir; € V(1) that detect the s-a-1 fault on IVi(1n1)
For any i1 € IV(1)74 that does not detect the s-a-0 o1 s-a-1
fault. we Lave ity such that iey[1] = Tg[1). in[i] = infi]. 2 <
1 < N,. produciug the sawe output as 11y in the true o1 faulry
circuit. We then can represent J1(1)74 using J1V(1)P7 as a <ot
of cubes. iry Uirg. frpU iy, .. v Uirp, where the first bit jn
eacl cube is a don’t care. This means the line IV (1)(1) can be
Lodiiy removed. i.e. the muitiple F-type fault corresponding to
IV (1){1) is rednudant. which is a coutradiction. Therefore. a
complementary vector pair has to exist for the stuck-at faults on
IV(1)(1) aud other J1 (1) k).

A similar arguinent can be made for the intermediate lines cor-
respoudiug to the iuputs to the g,,. using the fact that the -
output. fault-free network asserts all distinct 2" output combina-
tions. Q.E.D.

C Proof of Lemma 4.3

Proof: All unused state codes may be used as don't cares during
logic minimization. Invalid states can ounlv correspond to soue
unused state code. Since the cowmbinational network is prime and
irredundant under this don't care set. there always exists a valid
state that detects any fault (aua provides the initial propagation
to the next state lines or primary outputs) that the ipvalid state
detects. Q.E.D.

References
{1] V. D. Agarwal. S. K. Jaiu. aud D. M. Siuger. Automation in

design for testability. In Proc. of Customn Integrated Circuif
Conference. May 1984.

[2) K. Bartlett. R. K. Brayton. G. D. Hachtel. R. M. Jacoby.
C. R. Morrisou. R. L. Rudell. A. Saungiovauni-Viucentelli.
and A. R. Wang. Multi-level Logic Minimization Using -
plicit Don’t Cares. lu JEEE Transactions on Computer- Aided
Design. pages 723-740, June 1988.

{3) R. K. Brayton. G. D. Hachtel. Curt McMullen, and A.
Sangiovauni-Vincentelli. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, 1984,

[4] R. K. Brayton and F. Somenzi. Boolean Relations and the
Incomplete Specification of Logic Networks. In Proc. of VLSI
89. August 1989.

[5] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable
Design of Digital Systems. Computer Science Press, 1976.

{6) S. Devadas. H-K. T. Ma. and A. R. Newton. On the verifi-
cation of sequential machines at differing levels of abstrac-
tion. In JIEEE Transactions on Computer-Aided Design,
pages 713-722, June 1988.

S. Devadas. H-K. T. Ma. A. R. Newton, and A. Sangiovauni-
Vincentelli. Mustaug: state assignment of finite state ma-
chines targeting multi-level logic implementations. In JEEE
Transactions on Computer-Aided Design, pages 1290-1300
December 1988.

[7

(8] S. Devadas. H-K. T. Ma. A. R. Newton. and A. Sangiovanui-
Vincentelli. A Syuthesis and Optimization Procedure for
Fullv and Easilv Testable Sequential Machines. In IEEE
Transactions on Computer-Aided Deagr. October 1989. to

appear.
E. B. Eichelberger and T. W. Williams. A Logic Desigu

Structure for LSI Testability. In Proc. 14th Design Automa-
tion Conference. pages 462—46S. June 1977,

)

—

{10) J. Harrmanis and R. E. Stearus. Sowe dangers in the state
reduction of sequential machives. ln Information and Con-
trol. pages 252-260, September 1962.

{11} F. J. Hill and G. R. Peterson. Introduction to Switching
Theory and Logical Design. John Wiley and Sous. 1981.

(12) H-K. T. Ma. S. Devadas. A. R. Newton. and A. Sangjovanui-
Vinceutelli. Test generation for sequential circuits. In JEEE
Transactions on Computer-Aided Design, pages 1081-1093,
October 1988.

{13] G. De Micheli. R. K. Brayton. aud A. Sangiovanni-
Vincentelli. Optimal State assignment of Finite State Ma-
chines. In IEEE Transactions on Computer-Aided Design.
pages 269-285. July 1985.

{14] M. C. Psull and S. H. Unger. Minimizing the pumber
of states in incompletely specified sequential circuits. In
IRE Tvransactions on Electronic Computers, pages 356-357,
September 1959.

10

